GEOMETRY: EXAMPLES 3

1. Let $\Sigma \subset \mathbb{R}^3$ be a surface of revolution parametrised by

$$\sigma(u, v) = (f(u)\cos v, f(u)\sin v, g(u))$$

as usual. Let $\gamma : I \to \Sigma$ be a geodesic, where *I* is an open interval, and let $\psi(t)$ be a smooth choice of angle from $\dot{\gamma}(t)$ to the parallel through $\gamma(t)$. Prove *Clairaut's relation*: that $f(\gamma(t)) \cos \psi(t)$ is constant. If you stand on the equator, facing directly along it, then turn through angle α towards the north and walk straight ahead, what is the maximum latitude you will reach?

- 2. Show that if $H : \Sigma_1 \to \Sigma_2$ is a local isometry between embedded surfaces then a curve $\gamma : I \to \Sigma_1$ is a geodesic in Σ_1 iff $F \circ \gamma$ is a geodesic in Σ_2 .
- 3. Fix a > 0 and let Σ be the open half-cone $\{(x, y, z) : z^2 = a(x^2 + y^2), z > 0\}$. Let S denote the slit plane $\mathbb{R}^2 \setminus \{(x, 0) : x \leq 0\}$.
 - (a) By rolling up *S* into a cone, construct an explicit local isometry $H: S \to \Sigma$.
 - (b) Hence show that a geodesic on Σ is complete if and only if it's not contained in a meridian.
 - (c) Show also that for $a \le 3$ no geodesic on Σ intersects itself, but that for a > 3 every complete geodesic intersects itself.
- *(d) How many times does a complete geodesic intersect itself?
- 4. Fix an embedded surface Σ and a smooth path $\gamma : [t_0, t_1] \to \Sigma$. Show that if $\Gamma : (-\varepsilon, \varepsilon) \times [t_0, t_1] \to \Sigma$ is a smooth map with $\Gamma(0, t) = \gamma(t)$ for all t then the map $\mathcal{E} : (-\varepsilon, \varepsilon) \to \mathbb{R}$ given by

$$\mathcal{E}(s) = \text{Energy}(\Gamma(s, -))$$

is differentiable at s = 0 with

$$\mathcal{E}'(0) = 2 \int_{t_0}^{t_1} \dot{\gamma}(t) \cdot \Gamma_{st}(0, t) \,\mathrm{d}t.$$

[*Hint: Taylor expand* Γ_t *in the s-direction and use compactness of* $\left[-\frac{\varepsilon}{2}, \frac{\varepsilon}{2}\right] \times [t_0, t_1]$ *to bound the error.*]

5. Let *X* be a topological space that's locally homeomorphic to \mathbb{R}^2 . Show that:

- (a) *X* is connected iff it's path-connected.
- (b) *X* is second-countable iff it's *Lindelöf* (every open cover has a countable subcover) iff it can be covered by countably many charts.
- *(c) *X* is Hausdorff iff it's *regular* (given a closed set *C* and a point $p \in X \setminus C$ there exist disjoint open sets in *X* containing *p* and *C* respectively).
- 6.(a) Viewing T^2 as $\mathbb{R}^2/\mathbb{Z}^2$, show that the map $H : \mathbb{R}^2 \to \mathbb{R}^2$ given by $(x, y) \mapsto (x + \frac{1}{2}, -y)$ induces a diffeomorphism $h : T^2 \to T^2$. [*Hint: The quotient map* $Q : \mathbb{R}^2 \to T^2$ *is a local diffeomorphism.*]
 - (b) Show moreover that *h* generates an action of $\mathbb{Z}/2$ on T^2 which is free and proper, and deduce that the quotient *K* is an abstract smooth surface. This is the *Klein bottle*.
 - (c) Draw a fundamental domain for *K* and indicate the edge identifications. Hence show that *K* contains an open subset diffeomorphic to a Möbius band, and deduce that *K* is non-orientable.
 - (d) Convince yourself that the diagram shows the image of a smooth map $i : K \to \mathbb{R}^3$. On your fundamental domain for a K, draw the set S of points where i fails to be injective. On a fundamental domain for T^2 draw the preimage of S under the quotient map $q : T^2 \to K$.

7. Equip the open unit disc with the Riemannian metric

$$\frac{\mathrm{d}u^2 + \mathrm{d}v^2}{1 - u^2 - v^2}.$$

Prove directly that diameters are length-minimizing curves. Show that distances in the metric are bounded, but that areas can be unbounded.

8. Consider \mathbb{RP}^2 with the *round metric*, obtained by quotienting S^2 (with its standard metric) by the antipodal map. Draw a fundamental domain on S^2 and its image *D* under stereographic projection, indicating the boundary identifications. What do geodesics on \mathbb{RP}^2 look like in *D*?

The following questions go slightly beyond the course and are for the interest of enthusiasts.

- 9. Given a path $\gamma : [0,1] \to \Sigma$ and a vector $V_0 \in T_{\gamma(0)}\Sigma$, show that there is a unique parallel path of vectors $V : [0,1] \to \mathbb{R}^3$ along γ satisfying $V(0) = V_0$, as follows. Split the domain into pieces $[t_{i-1}, t_i]$ such that each $\gamma([t_{i-1}, t_i])$ is contained in the image of a parametrisation, and on each of these pieces apply the modification of Picard–Lindelöf given in Q9 of Analysis and Topology Sheet 2.
- 10. Write down the parallel transport equations in spherical polar coordinates

$$\sigma(\theta,\varphi) = (\sin\theta\cos\varphi, \sin\theta\sin\varphi, \cos\theta)$$

on S^2 . For the path $\gamma(t) = \sigma(\alpha, t)$, solve the equations explicitly to find the unique parallel path V(t) with $V(0) = \sigma_{\varphi}$. Compute the angle between V(0) and $V(2\pi)$, and compare with the intrinsic definition of Gaussian curvature.

11. Let $V \subset \mathbb{R}^2$ be the open square $(-1, 1)^2$. Define two abstract Riemannian metrics on V by

$$\frac{\mathrm{d}u^2}{(1-u^2)^2} + \frac{\mathrm{d}v^2}{(1-v^2)^2} \quad \text{and} \quad \frac{\mathrm{d}u^2}{(1-v^2)^2} + \frac{\mathrm{d}v^2}{(1-u^2)^2}$$

- (a) Define a *proper ray* in *V* to be a smooth map $\gamma : [0, \infty) \to V$ for which the preimage of every compact set in *V* is compact (i.e. if $K \subset V$ is compact then $\gamma(t) \notin K$ for $t \gg 0$). Show that homeomorphisms of *V* take proper rays to proper rays.
- (b) Prove that the surfaces equipped with the given Riemannian metrics are not isometric, but there is an area-preserving diffeomorphism between them [*Hint: for the first statement, show that exactly one of the two contains a proper ray of finite length.*]