GEOMETRY: EXAMPLES 3

1. Let $\Sigma \subset \mathbb{R}^{3}$ be a surface of revolution parametrised by

$$
\sigma(u, v)=(f(u) \cos v, f(u) \sin v, g(u))
$$

as usual. Let $\gamma: I \rightarrow \Sigma$ be a geodesic, where I is an open interval, and let $\psi(t)$ be a smooth choice of angle from $\dot{\gamma}(t)$ to the parallel through $\gamma(t)$. Prove Clairaut's relation: that $f(\gamma(t)) \cos \psi(t)$ is constant. If you stand on the equator, facing directly along it, then turn through angle α towards the north and walk straight ahead, what is the maximum latitude you will reach?
2. Show that if $H: \Sigma_{1} \rightarrow \Sigma_{2}$ is a local isometry between embedded surfaces then a curve $\gamma: I \rightarrow \Sigma_{1}$ is a geodesic in Σ_{1} iff $F \circ \gamma$ is a geodesic in Σ_{2}.
3. Fix $a>0$ and let Σ be the open half-cone $\left\{(x, y, z): z^{2}=a\left(x^{2}+y^{2}\right), z>0\right\}$. Let S denote the slit plane $\mathbb{R}^{2} \backslash\{(x, 0): x \leq 0\}$.
(a) By rolling up S into a cone, construct an explicit local isometry $H: S \rightarrow \Sigma$.
(b) Hence show that a geodesic on Σ is complete if and only if it's not contained in a meridian.
(c) Show also that for $a \leq 3$ no geodesic on Σ intersects itself, but that for $a>3$ every complete geodesic intersects itself.
*(d) How many times does a complete geodesic intersect itself?
4. Fix an embedded surface Σ and a smooth path $\gamma:\left[t_{0}, t_{1}\right] \rightarrow \Sigma$. Show that if $\Gamma:(-\varepsilon, \varepsilon) \times\left[t_{0}, t_{1}\right] \rightarrow \Sigma$ is a smooth map with $\Gamma(0, t)=\gamma(t)$ for all t then the $\operatorname{map} \mathcal{E}:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}$ given by

$$
\mathcal{E}(s)=\operatorname{Energy}(\Gamma(s,-))
$$

is differentiable at $s=0$ with

$$
\mathcal{E}^{\prime}(0)=2 \int_{t_{0}}^{t_{1}} \dot{\gamma}(t) \cdot \Gamma_{s t}(0, t) \mathrm{d} t .
$$

[Hint: Taylor expand Γ_{t} in the s-direction and use compactness of $\left[-\frac{\varepsilon}{2}, \frac{\varepsilon}{2}\right] \times\left[t_{0}, t_{1}\right]$ to bound the error.]
5. Let X be a topological space that's locally homeomorphic to \mathbb{R}^{2}. Show that:
(a) X is connected iff it's path-connected.
(b) X is second-countable iff it's Lindelöf (every open cover has a countable subcover) iff it can be covered by countably many charts.
*(c) X is Hausdorff iff it's regular (given a closed set C and a point $p \in X \backslash C$ there exist disjoint open sets in X containing p and C respectively).
6. (a) Viewing T^{2} as $\mathbb{R}^{2} / \mathbb{Z}^{2}$, show that the map $H: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $(x, y) \mapsto\left(x+\frac{1}{2},-y\right)$ induces a diffeomorphism $h: T^{2} \rightarrow T^{2}$. [Hint: The quotient map $Q: \mathbb{R}^{2} \rightarrow T^{2}$ is a local diffeomorphism.]
(b) Show moreover that h generates an action of $\mathbb{Z} / 2$ on T^{2} which is free and proper, and deduce that the quotient K is an abstract smooth surface. This is the Klein bottle.
(c) Draw a fundamental domain for K and indicate the edge identifications. Hence show that K contains an open subset diffeomorphic to a Möbius band, and deduce that K is non-orientable.
(d) Convince yourself that the diagram shows the image of a smooth map $i: K \rightarrow \mathbb{R}^{3}$. On your fundamental domain for a K, draw the set S of points where i fails to be injective. On a fundamental domain for T^{2} draw the preimage of S under the quotient map $q: T^{2} \rightarrow K$.

7. Equip the open unit disc with the Riemannian metric

$$
\frac{\mathrm{d} u^{2}+\mathrm{d} v^{2}}{1-u^{2}-v^{2}}
$$

Prove directly that diameters are length-minimizing curves. Show that distances in the metric are bounded, but that areas can be unbounded.
8. Consider \mathbb{R}^{2} with the round metric, obtained by quotienting S^{2} (with its standard metric) by the antipodal map. Draw a fundamental domain on S^{2} and its image D under stereographic projection, indicating the boundary identifications. What do geodesics on $\mathbb{R P}^{2}$ look like in D ?

The following questions go slightly beyond the course and are for the interest of enthusiasts.
9. Given a path $\gamma:[0,1] \rightarrow \Sigma$ and a vector $V_{0} \in T_{\gamma(0)} \Sigma$, show that there is a unique parallel path of vectors $V:[0,1] \rightarrow \mathbb{R}^{3}$ along γ satisfying $V(0)=V_{0}$, as follows. Split the domain into pieces $\left[t_{i-1}, t_{i}\right]$ such that each $\gamma\left(\left[t_{i-1}, t_{i}\right]\right)$ is contained in the image of a parametrisation, and on each of these pieces apply the modification of Picard-Lindelöf given in Q9 of Analysis and Topology Sheet 2.
10. Write down the parallel transport equations in spherical polar coordinates

$$
\sigma(\theta, \varphi)=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)
$$

on S^{2}. For the path $\gamma(t)=\sigma(\alpha, t)$, solve the equations explicitly to find the unique parallel path $V(t)$ with $V(0)=\sigma_{\varphi}$. Compute the angle between $V(0)$ and $V(2 \pi)$, and compare with the intrinsic definition of Gaussian curvature.
11. Let $V \subset \mathbb{R}^{2}$ be the open square $(-1,1)^{2}$. Define two abstract Riemannian metrics on V by

$$
\frac{\mathrm{d} u^{2}}{\left(1-u^{2}\right)^{2}}+\frac{\mathrm{d} v^{2}}{\left(1-v^{2}\right)^{2}} \quad \text { and } \quad \frac{\mathrm{d} u^{2}}{\left(1-v^{2}\right)^{2}}+\frac{\mathrm{d} v^{2}}{\left(1-u^{2}\right)^{2}}
$$

(a) Define a proper ray in V to be a smooth map $\gamma:[0, \infty) \rightarrow V$ for which the preimage of every compact set in V is compact (i.e. if $K \subset V$ is compact then $\gamma(t) \notin K$ for $t \gg 0$). Show that homeomorphisms of V take proper rays to proper rays.
(b) Prove that the surfaces equipped with the given Riemannian metrics are not isometric, but there is an area-preserving diffeomorphism between them [Hint: for the first statement, show that exactly one of the two contains a proper ray of finite length.]

